
Terminal P4

a netrunner implentation

distributing Min-Max computation

with IBM Aglet

Romain Dequidt, Germain Le Chapelain

December 3, 2003

1

Contents

1 Introduction 3
1.1 IBM Aglets . 3
1.2 Min-max . 3

2 Our application 5

3 Implementation 7
3.1 Model . 7
3.2 How does it look likeand behaves ? 7
3.3 Specific behavior due to our evaluation function (can look strange) 10
3.4 Honesty . 11

4 Conclusion 12

2

1 Introduction

We choose to implement a very trivial version of min-max to get familiar with
IBM aglets framework.
Here is the minimalist draft for the report we released for our teacher.

1.1 IBM Aglets

Aglets stands for agent-applet. Actualy, an aglet is a quite standard applica-
tion except that it can dispatch, clone and perform other sorts of operation on
itself and other aglets over a network of aglets servers running on the set of hosts.

In code, the aglet is a simple class, that extends Aglet class of the frame
work. This create bench of method for an application and other aglet to inter-
acts with the aglet.

The IBM aglets framework permit developper to deploy very simply a dis-
tributed architecture to perform computation on several hosts. In addition, an
aglet acces features of the actual host on wich it is running. As an instance.

1.2 Min-max

The Algorithm min-max is a very simple algorithm that apply to go-by-go
games, in wich there is not much possible goes for player.

The basis idea is to rely on a function that releave the ”goodness” of the
game for a player. A game good for a player is bad for the oponent.

Here is the theorical steps of the game:

• You want to play the go that lead to the Max game, the game that is the
better for you.

• The opponent will obviously perform a go that lead you to the worst game
possible. This is the Min

• ... and so one

So choosing the best go is equivalent to choose the go that will lead to the
max game, knowing that the following go, the one of your opponent, will lead
for a min game. In such a vision, it is easy to construct the three of possible
goes, and determine the better.

3

9

5428 897

2511910 123611

2392 464

Pick the Max of :

Pick the Min of :

Pick the Max of :

1 2 3 4 5 6 7

Result is :

Here, program gonna choose to play in 6 wich is valuate 9

Alpha-beta
It is obvious that, in a indepth three evaluation, very much computation could

be avoid since, when a minima or a maxima is found, leaves can be pruned. As
a result, a very simple optimisation of the algorithm is to keep to variable :

αandβ

Those variable, maintained during the whole three evaluation permit to
prune irevelant leaves. There is absolutely no disavantage in using this optimisa-
tion, thus, the trivial Min-max algorithm is only used for pedagogic purpose and
never implemented in an actual solution, we decided to get rid of that unfairness
by using that simple version rather than the regular Alpha-beta method.

4

2 Our application

We propose a For in a row game implementation, for the previous implementa-
tion done during our cursus in EPITA get stocked by the necessity of computing
very deeply the possibles-goes three. Here the distributed computation enable
seven powerfull Athlon-based EPITA computer to compute a solution parallely.

Our application involve a

• Server-GUI, that both interact with the human player throw events and
a output windows.

• 7 position surveyor (one per columns) wich are probe that inform the
server about the evaluation of the game in the case it would decide to play
in there columns.

TerminalFiar
GUI

Position
Surveyor 0

Position
Surveyor 1

Position
Surveyor 6

Seven surveyor inform server-GUI of there evaluations,
one per columns

Each surveyor acts as a kind of probe that would test, every goes, the eval-
uation function for the cases server would play in there columns.

The very important distribution of the calculus (for it is the purpose for that
project) is actualy the separation of the evaluation of the possible goes on each
surveyor.

Actualy, it is just as gowing down of one level in the min-max algorithm,
assuming that the actual precedent go is the one the probe is testing. Dunno if
it is pretty clear, so here is the previous schema including the probe.

5

9

5428 897

2511910 123611

2392 464

Choose the
maximal

evaluation-probe :

Pick the Min of :

Pick the Max of :

1 2 3 4 5 6 7

Server choice
among probe :

1 2 3 4 5 6 7

Distributing computation among computer
is just going down a level in Min-max

6

3 Implementation

The source code release is more to be see as a... kind of draft, cause we rely
on structural problem about the aglet framework rather than a very clean,
comprehensive modelisation. The software is not even completely finished, but
remain a good start point for one who would like to get started in developping
with aglets.

3.1 Model

Here is a custom-UML schema of the class interaction :

TerminalFIAR

Aglets

+Evaluate()

Dwarf

Frame

«uses»

+ShowBoard()

InViewer

1 1

GUI
11

+Place()

Board

1

1

1

1

Distributing computation among computer
is just going down a level in Min-max

3.2 How does it look likeand behaves ?

The main server, p4.TerminalFiar is launched from tahiti, the included simple
aglets server runtime shipped in the whol aglet framework :

7

Tahiti sever is one of the few stuffs that work as expected.

Then, the GUI runned in TerminalFiar allow user to interacts with the in-
ternal representation of the game in Board.

a SWING GUI that desserve to be au louvre.

The evaluation is done thanks to the seven dwarves that compute evaluation
function on each columns. Each dwarch has a minimalist AWT interface to

8

show off is one actual representation of the game, and the evaluation it propose
in the case the server should decided to play in its columns

The well-named dwarf.

And the whole stuff together

This image file is called ”aglets.png” on my hard-drive

Let’s play !

9

3.3 Specific behavior due to our evaluation function (can
look strange)

There is no random playing and no heuristic or cutt-of playing in our imple-
mentation. Thus, the AI will play the very first go that it can, since it consider
it as the maximum go possible.

Since the max() function evaluate position from the left to the right, if to
position are equal in evaluation, the most on the left will be choosen, that the
reason why the IA allways play on the left on its forst go. We could have imple-
mented kind of an heuristic to correct that, but that beahvior doesn’t disturb
me personnaly, since I can explain it.

The evaluation function in our implementation of the evaluation function is
pretty simple :

• A party won (four in a row for the IA) is valuate as +∞
• A party lost (four in a row for the player) is valuate as −∞
• When maximal depth for evaluation is reached : return 0 for evaluation.

We didn’t had enough time to improve the evaluation, wich is very important
to express, but was totaly irrelevant for the worked we had to do (computation
distribution, for those who forgot it as soon.)

Very strange behavior can be observed, especialy when the user can win in
two point :

In this particular case, every evaluation on the seven columns will return
−∞, because according to minmax, there is absolutely no way of preventing
player to win.

Theplayermodelisedbyminmaxisperfect.

Therefore, IA will blow is mind on that case, and just play the first possible
go on the left, wich is valuated −infty just as all the others. We introduce the
french verb ”Craquer” for that special case.

A simple pass-throw tips would have made the computer choose at least a
position that prevent player for winning on the next go, but again that behavior
is more intersting to discuss about rather than to correct by a false method.

10

3.4 Honesty

We did not manage to use several features of the aglets :

• Impossibility of creating an stand-alone client application that create Aglets
on a remote nor local server, even while following litteraly the documen-
tation.

• Usation of Async message seems not to work when the same kind of mes-
sage is received more than about five time. Therefore we were made to
use sync message even in the computation loop, making the application
kind of sequential even when deploying aglets over the network. At this
point I am just praising for the teacher not to read that line and not to
read the related code...

• Failure in our attempt to fully understand security policy of aglets, and
especialy the server. Thus, we made or server ”unsecure” by default, that
even worst than if mister aglet did default consistent security parameters.

11

4 Conclusion

Aglets are very intersting in the idea they introduce, but there is still so much
technical disavantage in using it.

• Difficulty in installation

• Security philosphy impossible to understand for a regular / low EPITA
student brain.

• Very few documentation, and even worth : rotten jokes in the few docs
available for version 2.0

• Features simply not working, or with special magic capability.

By the way, netrunner remains a very intersting project, but desperately
needs a whole course hour to install correctly the framework and explain the
basis of Aglets usation, or, at the very least, a HOW-TO explaining the head-
lines. Why not giving bonus point for the student that would be in charge for
that the next year ?

12

